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Abstract: α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present
in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during
carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they
may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction
associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone
series, whose members differ only in the number and position of methyl groups on a common scaffold,
on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by
density functional theory (DFT) analysis. These compounds’ effect on enzymatic activity, their molec-
ular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of
the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on
the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces
the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption
rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a
metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis
lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs)
than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR
inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibit-
ing the maximal electron transport flux. Additionally, menadione-induced ROS production was
prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in
a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the
regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new
drugs for T2DM and metabolic syndrome.

Keywords: hydroquinones; methyl derivatives; antioxidants; diabetes; DFT; docking

1. Introduction

Diabetes mellitus (DM) is a metabolic chronic disease, highly prevalent in both the
developing and developed world [1]. It is characterized by inadequate glycemic control,
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caused by either reduced insulin secretion (type 1 diabetes mellitus, T1DM) or by a reduced
cellular response to insulin (type 2 diabetes mellitus, T2DM) [2–4], which is the main type
of diabetes, with a prevalence of the 90–95% of the total incidence [5]. In T2DM, enhanced
ROS production via reduced intracellular antioxidant levels is observed [6,7], which, at the
same time, accelerates the dysregulation of glucose metabolism and tissue damage through
signal transductions.

Molecular crosstalk between microRNAs and oxidative stress in the pathogenesis of
T2DM and its related health problems has been pointed out [6]. Also, recently, it has been
suggested that miRNAs and oxidative stress influence each other. Oxidative stress seems
to regulate the function and biogenesis of several miRNAs and vice versa. An imbalance in
miRNA expression can lead to oxidative stress by promoting free radical generation and
(or) reducing the endogenous antioxidant capacity [8–10].

On the other hand, α-glucosidase is an emerging target in developing novel T2DM
agents such as PTP1B and aldose reductase, among others [11–13]. α-glucosidase is present
in the brush border membrane of intestinal cells [14]. It catalyzes the hydrolysis of the
α-(1,4)-glycosidic linkage of sugar (disaccharides and starch), releasing free monosaccha-
rides (α-D-glucose) during the final step of carbohydrate digestion. The α-glucosidase
inhibitors (AGIs) can suppress postprandial hyperglycemia and decrease carbohydrate
digestion rate, therefore reducing the glucose level in the bloodstream [15–21].

It is known that dietary polyphenols modulate post-prandial increases in glucose
levels, intestinal integrity, and oxidative damage [22–24]. Consequently, a growing interest
in this type of compound has been observed in the last few years. It has been suggested
that oxidative energy metabolism plays a crucial role in mitochondrial ATP production and
in maintaining a gut barrier with high integrity [25]. The disruption of this intestinal barrier
function is related to inflammation [26] and dysmetabolic conditions, including T2DM [27].
In this context, the human intestinal epithelial Caco-2 cell line has been used to assess the
relationship between mitochondrial ATP production and intestinal permeability [28].

Previously, we have reported an ortho-carbonyl hydroquinone series that disrupts
mitochondrial bioenergetics in cancer cells by Complex I inhibition and oxidative phospho-
rylation uncoupling without affecting non-cancer cells [29–31]. On the other hand, it has
been described that certain hydroquinones and quinones can induce redox cycling [32–35];
however, this is not the case with these hydroquinones [30]. Since they exhibit a high antiox-
idant capability in cell-free analysis [36] and, as has been discussed above, oxidative stress
is involved in the intestinal dysfunction associated with T2DM, this work aims to study the
antioxidant capacity of the methyl derivatives of a bicyclic ortho-carbonyl hydroquinone
(Table 1), which differs only in the number and position of methyl groups, and its effects as
an AGI, and in modulating the energetic metabolism of Caco-2 cells.

Table 1. Compounds studied in this work.
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2. Results
2.1. Synthesis of the Compounds

The new hydroquinones (Scheme 1) were obtained in two steps. The first consists of
obtaining acylhydroquinones following the reported method [37,38] with a slight mod-
ification. To a Reaction Vial G10 (Anton-Paar, Graz, Austria) equipped with a stir bar,
the following were added: 500 mg of corresponding hydroquinone, a 1.5 equivalent of
the corresponding carboxylic acid, and 3 mL of Boron trifluoride dihydrate. The mixture
was heated at 160 ◦C for 30 min in a Monowave 50 reactor (Anton-Paar). The mixture
was allowed to cool to room temperature, neutralized with saturated sodium bicarbonate
solution, and extracted with ethyl acetate. The extract was washed with distilled water,
dried with anhydrous sodium sulfate, and then filtered and concentrated in a rotavapor. Af-
terward, the corresponding acylhydroquinone was purified by flash chromatography with
hexane/ethyl acetate 8:1 v/v as an eluent. The second step was performed following refer-
ence [39], although this was also done with slight variations. A mixture of corresponding
acylhydroquinone (1 equiv) and Ag2O (2.5 equiv) in 30 mL of dichloromethane was vigor-
ously stirred for 1–2 h at r.t., yielding the corresponding quinone. This mixture was filtered
through celite and added dropwise to a solution of the 4- (2-methyl-2-propenyl)morpholine
or 4-(2-ethylbut-1-en-1-yl)morpholine at r.t. for 2 h, being monitored by thin-layer chro-
matography. Then, the solvent was evaporated under reduced pressure, and the residue
was dissolved in a mixture of ethanol and hydrochloric acid and refluxed by 1 h. Next, it
was poured on an ice/water mixture, and the product was extracted with 3 portions of
20 mL of ethyl acetate, which were dried with anhydrous sodium sulfate and then filtered;
the solvent was evaporated under reduced pressure and purified by flash chromatography
using hexane/ethyl acetate 4:1 v/v as an eluent.
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2.2. In Vitro Antioxidant Capacity

The radical-scavenging activities of the hydroquinone series against peroxyl radi-
cals were assessed (ORAC assays). The results are presented in Table 2. For the series
with the gem-dimethyl on ring B (compounds 1–5), compound 1 showed the highest
antioxidant capacity (8.8 + 0.2 mol TE/mol comp). Similarly, for the series with the
gem-diethyl group on ring B (compounds 6–10), compound 6 presents the highest antioxi-
dant capacity (7.0 + 0.3 mol TE/mol compound). These results indicate that introducing
methyl substituents such as R1, R2, and R3 decreases the antioxidant capacity of the com-
pounds. The replacement of the gem-dimethyl with the gem-diethyl group also decreases
the antioxidant capacity.

2.3. Calculation of Main Thermodynamic Parameters

To obtain insight into the mechanism responsible for the antioxidant capacity of
the compounds, we carried out DFT calculations. We considered the three mechanisms
commonly associated with radical scavenging [40]: Hydrogen atom transfer (HAT), se-
quential electron transfer-proton transfer (SET-PT), and sequential proton loss-electron
transfer (SPLET). These mechanisms can occur in parallel but at different rates. The thermo-
dynamic parameters associated with each mechanism can help to assess their feasibility. The
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HAT mechanism is associated with the bond dissociation enthalpy (BDE) [40]. The SET-PT
mechanism is associated with ionization potential (IP) and proton dissociation enthalpy
(PDE) [40]. The SPLET mechanism is associated with proton affinity (PA) and electron
transfer enthalpy (ETE) [40]. We evaluated the BDE for both OH groups (1 and 2 in Table 2)
present in all compounds (BDE 1 and BDE 2 in Table 2). The highest values correspond
to BDE 1, suggesting that the intramolecular hydrogen bond (IAHB) C-H···O impedes
O-H dissociation. The BDEs of the O-H not involved in an IAHB presented values around
70 kcal/mol. Based on the above, the SET-PT and SPLET mechanisms only were evaluated
for the estimation of PDE and PA for OH2.

Table 2. In vitro radical-scavenging activities (ORAC), calculated BDEs, IP, PDE, PA, and ETE
(values in kcal/mol), and inhibitory effect of ortho-carbonyl hydroquinones on α-glucosidase activity.
Data are shown as means ± SD of three independent experiments. * Calculated BDE of the O-H 1 for
anions deprotonated at O-H 2. n.d.: not determined. n: not significant, a: p < 0.001 versus acarbose.
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To correlate to the experimental antioxidant capacity mechanism in relation to ther-
modynamic parameters, two approaches can be employed [41–43]. Some reports consider
the value of the parameter as the key factor associated with a mechanism [41,42]; namely,
the lower value, the higher their contribution of the mechanism. However, an alternative
method is to consider the correlation between the experimental values of assays and ther-
modynamic parameters [43]. Following the first approach, the most favorable mechanism
corresponds to the HAT, with the H-atom abstraction corresponding to the hydroxyl 2.
Looking into the correlation between ORAC and the thermodynamic parameters (Figure 1),
we found that the best correlation corresponds to the IP. However, the BDEs and IP slopes
are positive (Figure 1A–C), indicating that high values of the thermodynamic parameter
(theoretically a less potent antioxidant) correspond to the high values of ORAC (experimen-
tally stronger antioxidants).

We also consider the hydroquinone anions, with the compounds deprotonated at
hydroxyl 2, as contributing antioxidant species. The BDE for the O-H 1, obtained in this
form, is presented in Table 2. These values were lower than those of neutral species.
However, the correlation exhibited the same tendency regarding the experimental ORAC
values (Figure 1D,E). These results suggest that the variation of the antioxidant capacity of
the compounds is influenced by a factor not considered in the calculations. These variables
(BDE, IP, and PA) do not consider the kinetic factors that can influence the experimental
antioxidant capacity, and the steric hindrance in particular can lead to a reduction in the
antioxidant capacity [44–46]. In this case, the increase in the number of the methyl groups
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leads to a variation in the electronic density that should favor the antioxidant capacity;
however, it also increases the steric hindrance to access the –OH group, which can explain
the tendency observed in the ORAC results.
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Figure 1. Correlation among calculated thermodynamic parameters and experimental ORAC values.
(A) BDE of OH1 versus ORAC. (B) BDE of OH2 versus ORAC. (C) IP versus ORAC. (D) PA of OH2
versus ORAC. (E) BDE of OH1 for the anions deprotonated at OH2 versus ORAC.

2.4. In Vitro and In Silico α-Glucosidase Inhibitory Activity

The effect of synthesized hydroquinones against α-glucosidase activity was
evaluated (Table 2). Most of the evaluated compounds showed high inhibitory activ-
ity, with six of the ten compounds showing IC50 values lower than the well-known AGI
acarbose (IC50 = 194.0 + 1.7 µM). Compounds 8 and 10 presented the highest inhibitory
potency, with IC50 values of 60.0 + 1.5 µM and 78.0 + 1.1 µM, respectively, and compound 9
was the worst. These results suggest that the gem-diethyl group in ring B is a key structural
factor in the inhibitory potency of the compounds, but the presence of methyl substituents
in the rest of the structure needs detailed examination due to their variable effect.

To obtain a detailed explanation of the structure–activity relationship observed in the
experimental inhibitory results, we carried out molecular docking. Several conformers and
poses for each molecule were analyzed. The binding site was defined by the crystallographic
structure obtained for α-glucosidase in complex with acarbose (PDB code: 3W37). The
results were used as an input for an MMGBSA free energy calculation study. Figure 2A
shows the values of MMGBSA ∆Gbind and the IC50 presented as pIC50 = –log[IC50], and
the correlation between them is shown in Figure 2B. The correlation between experimental
pIC50 values and calculated MMGBSA ∆Gbind gives a R2 = 0.71.

Figure 2 shows 3D maps of the binding interactions of compound 3 (Figure 2C),
compound 10 (Figure 2D), and acarbose (Figure 2E) with the α-glucosidase enzyme. Acar-
bose, which corresponds to the model ligand to α-glucosidase, shows a three-center hy-
drogen bond interaction between one of their hydroxyl groups with aspartic acid 232 and
arginine 552, a hydrogen bond interaction between another of their hydroxyls and aspartic
acid 568, and a hydrogen bond interaction between two other hydroxyls and histidine
626. Additional hydrophobic interactions of acarbose with tryptophan 432 and phenylala-
nine 601 are also identified. Compound 3, which presented the highest MMGBSA ∆Gbind



Int. J. Mol. Sci. 2024, 25, 8334 6 of 17

values (lowest affinity), presents a three-center hydrogen bond interaction between one
of their hydroxyls with aspartic acid 232 and arginine 552, like acarbose, hydrophobic
interactions with phenylalanine 601 and phenylalanine 476, and π-π stacking interactions
with tryptophan 432. Compound 10, instead, with the lowest MMGBSA ∆Gbind value
(highest affinity), shows a hydrogen bond between one of their hydroxyls and aspartic acid
568. In addition, it presents hydrophobic interactions with aspartic acid 630, arginine 629,
phenylalanine 476, and methionine 470, and additionally a π-π stacking interaction with
tryptophan 432.
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Figure 2. In silico molecular docking for ortho-carbonyl hydroquinone series against the α-glucosidase
enzyme. (A) Binding free energy components for the α-glucosidase–hydroquinone (3 and 10) com-
plexes calculated by MM-GBSA analysis; all energies are in kcal/mol and pIC50 for ortho-carbonyl
hydroquinones. (B) Correlations of calculated MMGBSA∆G values with experimental IC50 inhibitory
values, expressed as pIC50 = −log [IC50]. The r square value from linear regression and p-value for
Spearman’s correlation (n = 10) are shown. (C–E) 3D maps binding interactions of compound 3 and
10 against the α-glucosidase enzyme. Ligand compound 3 (A,C) and compound 10 (B,D) exposure
points are indicated with gray coloring, while the binding interactions of ligands with α-glucosidase
are indicated with red lines. (C) Binding free energy components for the α-glucosidase–hydroquinone
(3 and 10) complexes calculated by MM-GBSA analysis; all energies are in kcal/mol.

MMGBSA binding free energies were estimated for the complex of the enzyme with
compounds 3 and 10 (Table 3). Compound 10 shows a stronger net binding energy (∆Gbind)
compared with compound 3 (−24.19 vs. 6.00 kcal/mol). For both compounds, the Van der
Waals energy dominated over all other energies. The favorable contribution of lipophilic
and electrostatic binding energy (∆Gbind LP and ∆Gbind CB) is similar for both compounds.
The most remarkable difference is the unfavorable contribution of the generalized Born
electrostatic solvation energy (∆Gbind GB) for compound 3 compared with compound 10.
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Table 3. Calculated binding energies of molecules 3 and 10 in the complex.

Compound
MM-GBSA (kcal/mol)

∆Gbind ∆Gbind CB ∆Gbind CV ∆Gbind HB ∆Gbind LP ∆Gbind PK ∆Gbind SC ∆Gbind GB ∆Gbind VW

3 −6 −6.55 0.07 −1.17 −12.19 −1.86 0.02 38.33 −22.65
10 −24.19 −8.02 6.67 −1 −16.26 −0.82 0 18.33 −23.09

2.5. Effect of Ortho-Carbonyl Hydroquinones on Proliferation and Metabolism of Caco-2 Cells

We evaluate the effect of ortho-carbonyl hydroquinones 1–10 on the intestinal Caco-2
cell line at 24 h of treatment. As Figure 3A shows, compounds 5 and 10 significantly
increased the MTT reduction, suggesting that these compounds increase the cell number.
Consistent with the antiproliferative effect previously described by us [30], compound 6,
instead, decreased the MTT reduction. The other compounds of this series did not show
significant changes in Caco-2 cell experiments.
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Figure 3. Effect of ortho-carbonyl methyl-substituted hydroquinones on proliferation, mitochondrial
respiration, and glycolysis in Caco-2 cells. (A) Effect of compounds on the MTT reduction in Caco-2.
Cells were treated with compounds (1, 5, 10, 30, 50, and 100 µM) for 24 h. (B) Dot-plot for basal
mitochondrial OCR (basal mitoOCR) vs. glycolysis. The red square represents to control condition.
Three groups of compounds are highlighted in blue, yellow, and green. (C) Dendrogram with five
and two parameters of mitochondrial respiration and glycolysis, respectively, affected by compounds
(100 µM) for 24 h of treatment. Data are shown as means ± SD of three independent experiments.
** p < 0.01, *** p < 0.001 control, and n.s.: not significant.

We previously described how ortho-carbonyl hydroquinone scaffolds inhibit oxidative
phosphorylation in breast cancer cells [29–31,37]. Since the reduction in glucose utiliza-
tion and metabolism in intestinal cells is a promising target for T2DM treatment, the
effect of these compounds on mitochondrial respiration and glycolysis in Caco-2 cells
was determined. As Figure 3B shows, three groups of compounds were identified in a
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dot-plot from basal mitochondrial OCR and glycolysis (ECAR). Compared to the control
(red dot), group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis. Group B
(compounds 1 and 6) reduces the basal mitoOCR and increases ECAR, suggesting that it
induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7)
increases the glycolysis lacking effect on OCR. The effect of ortho-carbonyl hydroquinone
series (100 µM) on five parameters of mitochondrial respiration (basal OCR, max OCR,
spare capacity, ATP-linked OCR, and proton leak-driven OCR), and two of glycolysis
(glycolytic capacity and glycolysis), is represented in a dendrogram (Figure 3C). Interest-
ingly, two clusters of compounds are shown with differential effects on maximal OCR and
glycolysis. Cluster 1 is composed of glycolysis enhancers with a strong inhibitory effect on
max. OCR: compounds 1, 6, 7, and 9. Cluster 2 is composed of glycolysis inhibitors with
a reduced effect on max OCR: compounds 2, 3, 4, 5, 8, and 10. No correlations between
OCR and ECAR parameters, α-glucosidase activity inhibition, or ORAC were observed
(Supplementary Figure S1).

2.6. Compounds 5 and 10 Differentially Act on Mitochondrial Respiration, Glycolysis, and ROS
Production in Caco-2 Cells

Based on the above results that identify compounds 5 and 10 as among the most
active AGIs, we evaluated the effect of both compounds on mitochondrial respiration
and glycolysis (Figure 4). Compound 5 reduces the basal and max OCR values without
affecting the proton leak-driven OCR. In contrast, compound 10 increases the proton leak-
OCR and decreases max OCR (Figure 4A–D). Both compounds significantly reduce the
glycolysis (Figure 4E–H).
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Figure 4. (A–D) Effect of selected compounds (100 µM, compounds 5 and 10) on mitochondrial
respiration and (E–H) glycolysis at 24 h of treatment. (I,J) Evaluation of antioxidant effects in
the in vitro model of menadione-dependent ROS production. Effects of compounds 5 and 10 on
(I) mitochondrial ROS and (J) ROS in Caco-2 cells treated with menadione. The mitoROS and cytosolic
ROS were evaluated with mitoSOX red and DHE, respectively. Data are shown as means ± SD of
three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001, control. n.s.: not significant.
#: ** p < 0.01 for compound vs. compound + Menadione.
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Using menadione as an ROS inducer [47,48], the preventive effect of compounds 5 and 10
on mitochondrial and cytosolic ROS production was evaluated. No changes in the mitochon-
drial ROS production were observed (Figure 4I). However, menadione-dependent cytosolic
ROS production was significantly prevented by compound 5 (Figure 4J). Collectively,
the results suggest that compounds 5 and 10 are AGIs that also reduce glycolysis and
mitochondrial respiration, and compound 5 has a cytosolic antioxidant effect.

3. Discussion

The T2DM pathogenesis involves alterations in nutrient uptake and energetic metabolism,
in which high oxidative stress and inflammation mediate altered cell signaling [49]. In-
testinal cells participate in the nutrient uptake and the catabolism of carbohydrates by the
α-glucosidase enzyme, which is a current target for T2DM treatment [50]. We evaluated the
antioxidant capacity of methyl derivatives of a bicyclic ortho-carbonyl hydroquinone, which
differ only in the number and position of methyl groups, and their effects as AGIs, and
in modulating the energetic metabolism of Caco-2 cells. The antioxidant capacity results
suggest that the increase in the methyl groups reduce antioxidant capacity due to the steric
hindrance to access the –OH group, despite how the electronic effects should favor it. The
docking results suggest that the gem-diethyl group in ring B is a key structural factor in the
inhibitory potency of the compounds. Compounds 5 and 10 were among the most potent
inhibitors of α-glucosidase and produced an increase in the cell number. These compounds
correspond to those fully methylated at R1, R2, and R3, with gem dimethyl and gem diethyl
at R4 and R5, respectively (Table 1). Beyond clinical AGI drugs used in T2DM, it has been
reported that new naturally occurring compounds act as AGIs [51,52], also producing a
reduction in glucose-transporter-encoding gene expression and glucose uptake in vitro
and in pre-clinical models [53]. Our results at the cellular level allow us to identify three
groups of compounds with differential actions on OXPHOS and the glycolysis of Caco-2
cells. Group A reduced the glycolysis, group B reduced the basal OCR and increased ECAR
(metabolic remodeling-inducers), and group C increased the glycolysis lacking effect on
OCR. Previously, we described that small structural modifications to the ortho-carbonyl
hydroquinone scaffold studied produce Complex I inhibitors and OXPHOS uncouplers
by a protonophoric mechanism [29–31] based on modification in the gem-dimethyl/ethyl
substitution. Moreover, recent studies on the corresponding quinones showed that these
methyl substitutions influence redox potential [54] and the ability to inhibit the mitochon-
drial electron transport chain [55]. In particular, FRV-1, an ortho-carbonyl substituted
quinone, was identified as a new inhibitor of the deactive conformational status of Com-
plex I [55]. Notably, our results in Caco-2 cells expand the information available on the
structure–mitochondrial activity relationships of ortho-carbonyl substituted compounds.

Our results show that in Caco-2 cells, compound 5 was an OCR/ECAR inhibitor and
compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the
maximal electron transport flux. Despite this different action in OXPHOS, both compounds
reduced the glycolysis, suggesting that compounds 5 and 10 could be useful for reducing
intestinal glucose uptake and metabolization under a potential T2DM condition.

4. Conclusions

We found that the presence of methyl substituents leads to a reduction in the com-
pounds’ antioxidant capacity, and concomitantly an increase in their capacity for AGIs.
Fully methylated ortho-carbonyl hydroquinones 5 and 10 present lower antioxidant capacity,
and potent capacity as AGIs, and they affect the energetic metabolism and reduce glycolysis,
promoting the proliferation of Caco-2 cells. Compound 6 decreased the proliferation of
Caco-2 cells, while the other compounds in this series did not show significant changes.
Compound 5 was an OCR/ECAR inhibitor in Caco-2 cells, while compound 10 was a dual
agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport
flux. Our results reveal that slight structural variations in a hydroquinone scaffold led to
diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochon-
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drial bioenergetics in Caco-2 cells. These findings may be useful for designing new drugs
for T2DM and metabolic syndrome.

5. Experimental Section
5.1. Synthesis and Characterization
5.1.1. General Methods

1H and 13C NMR spectra were obtained from a spectrometer operating at 400.13 MHz
(1H) and 100.61 MHz (13C) in deuterated chloroform (CDCl3) as the solvent. Chemical shifts
are reported as ppm downfield from TMS for 1H-NMR and relative to the central CDCl3
resonance (77.0 ppm) for 13C-NMR. All melting points were uncorrected and were deter-
mined using an Electrothermal 9100 apparatus. High-resolution mass spectra (HRMS) were
obtained on a Bruker Compact Q-TOF MS (ESI/QTOF). Silica gel 60 (230–400 mesh ASTM)
and TLC sheets silica gel 60 F254 were used for flash-column chromatography and analyti-
cal TLC, respectively. All reagents were purchased from Sigma-Aldrich.

5.1.2. 5,8-Dihydroxy-4,4-dimethylnaphthalen-1(4H)-one (1)

This compound was synthesized as previously described [56–59].

5.1.3. 5,8-Dihydroxy-4,4,6-trimethylnaphthalen-1(4H)-one (2) and
5,8-Dihydroxy-4,4,7-trimethylnaphthalen-1(4H)-one (3)

Following the general method of acylation, methylhydroquinone and acetic acid react
to give a mixture of 3′-Methyl and 4′-methyl 2′,5′-dihydroxyacetophenone regioisomers
in a 14:86 ratio and a 32% yield, which was used in the next step without purification.
Following the general method, this mixture was oxidized with Ag2O and then reacted with
4-(2-methylbut-1-en-1-yl)morpholine to yield compounds 2 and 3. Column chromatogra-
phy allows for their separation, in 29% and 5% total yields, respectively. 2 (yellow solid):
1H-NMR δ: 1.62 (s, 3H), 2.30 (s, 3H), 4.51 (s, OH), 6.24 (d, J = 10.1 Hz, 1H), 6.74 (s, 1H),
6.83 (d, J = 10.1 Hz, 1H), 12.72 (s, OH). 13C-NMR δ: 16.9, 25.0, 38.2, 113.9, 117.1, 123.9,
132.7, 134.4, 144.1, 156.6, 160.9, 190.9. M.p. 204.0 ◦C. HRMS (ESI)m/z calcd. for C13H14O3
[M+H]+: 219.1016, found: 219.1019. 3 (yellow solid): 1H NMR δ: 1.60 (s, 3H), 2.23 (s, 3H),
4.55 (s, OH), 6.24 (d, J = 10.1 Hz, 1H), 6.80 (s, 1H), 6.84 (d, J = 10.1 Hz, 1H), 13.01 (s, OH).
13C NMR δ: 15.2, 25.0, 38.1, 114.4, 124.1 125.3, 131.7, 144.4, 155.4, 160.9, 191.5. M.p. 230.4 ◦C
(d). HRMS (ESI)m/z calcd. for C13H14O3 [M+H]+: 219.1016, found: 219.1020.

5.1.4. 5,8-Dihydroxy-4,4,6,7-tetramethylnaphthalen-1(4H)-one (4) [30,39,60]
1H-NMR δ(ppm): 0.54 (s, 3H), 1.58 (dq, J1 = 14.0 Hz, J2 = 7.4 Hz, 2H), 2.24 (s, 3H), 2.25

(s, 3H), 2.77 (dq, J1 = 14.0 Hz, J2 = 7.5 Hz, 2H), 4.41 (s, OH), 6.46 (d, J = 10.13 Hz, 1H), 6.61
(d, J = 10.13 Hz, 1H), 13.25 (s, OH).

5.1.5. 5,8-Dihydroxy-2,4,4,6,7-pentamethylnaphthalen-1(4H)-one (5)

Column flash chromatography on silica gel allowed for the isolation of 4 (yellow solid,
67% yield). 1H-NMR δ(ppm): 1.58 (s, 3H), 1.99 (d, J = 1.25 Hz, 3H), 2.23 (s, 3H), 2.25 (s, 3H),
4.41 (s, OH), 6.61 (d, J = 1.38 Hz, 1H), 13.39 (s, OH). 13C-NMR δ: 11.60, 12.99, 15.72,
25.42, 29.69, 37.34, 112.63, 123.25, 129.76, 131.19, 131.99, 143.35, 155.11, 156.75, 191.55. M.p.
199.9–201.5 ◦C. HRMS (ESI)m/z calcd. for C15H18O3 [M+H]+: 247.1329, found: 247.1330.

5.1.6. 4,4-Diethyl-5,8-dihydroxynaphthalen-1(4H)-one (6)

This compound was synthesized as previously described [30,39,59,60].

5.1.7. 4,4-Diethyl-5,8-dihydroxy-6-methylnaphthalen-1(4H)-one (7) and
4,4-Diethyl-5,8-dihydroxy-7-methylnaphthalen-1(4H)-one (8)

The 3′- and 4′-methyl acetophenones mentioned above were oxidized with Ag2O and then
reacted with 4-(2-ethylbut-1-en-1-yl)morpholine to yield compounds 4,4-diethyl-5,8-dihydroxy-
6-methylnaphthalen-1(4H)-one (7) and 4,4-diethyl-5,8-dihydroxy-7-methylnaphthalen-1(4H)-
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one (8). Column chromatography allows for their separation in 27.5% and 4.5% total yields,
respectively. 7 (yellow solid): 1H NMR δ: 0.47 (t, J = 7.5 Hz, 6H), 1.51 (dq, J1 = 7.5 Hz,
J2 = 14.0 Hz, 2H), 2.22 (s, 3H), 2.71 (dq, J1 = 7.5 Hz, J2 = 14.0 Hz, 3H), 4.40 (s, OH), 6.39
(d, J = 10.1 Hz, 1H), 6.55 (d, J = 10.1 Hz, 1H) 6.66 (s, 1H), 12.71 (s, OH). 13C NMR δ: 9.4,
16.9, 30.6, 48.8, 116.0, 117.2, 128.4, 130.9, 132.2, 143.8, 156.7, 159.4, 191.7. M.p. 198.2 ◦C.
HRMS (ESI)m/z calcd. for C15H18O3 [M+H]+: 247.1329, found: 247.1332. 8 (yellow solid):
1H NMR δ: 0.55 (t, J = 7.5 Hz, 6H), 1.57 (dq, J1 = 7.5 Hz, J2 = 14 Hz, 2H), 2.23 (s, 3H), 2.75
(dq, J1 = 7.5 Hz, J2 = 14 Hz, 2H), 4.50 (s, OH), 6.48 (d, J = 10,1 Hz, 1H), 6.64 (d, J = 10.1 Hz,
1H), 6.77 (s, 1H), 13.08 (s, OH). 13C NMR δ: 9.4, 15.2, 30.6, 48.5, 117.0, 124.8, 125.2, 128.1,
128.3, 144.2, 155.8, 159.6, 190.9. M.p. 125.3–129.0 ◦C. HRMS (ESI)m/z calcd. for C15H18O3
[M+H]+: 247.1329, found: 247.1330.

5.1.8. Synthesis of 4,4-Diethyl-5,8-dihydroxy-6,7-dimethylnaphthalen-1(4H)-one (9)

Column flash chromatography on silica gel allowed for the isolation of 8 (yellow
solid, 62% yield). 1H NMR δ: 0.54 (t, J = 7.5 Hz, 6H), 1.57 (dq, J1 = 7.5 Hz, J2 = 14.0
Hz, 2H), 2.24 (s, 3H), 2.25 (s, 3H), 2.77 (dq, J1 = 7.5 Hz, J2 = 14.0 Hz, 2H), 4.40 (s, OH),
6.46 (d, J = 10.1 Hz, 1H), 6.61 (d, J = 10.1 Hz, 1H), 13.25 (s, OH). 13C NMR δ: 9.44, 11.60,
13.06, 30.77, 48.57, 115.32, 123.52, 127.95, 128.53, 131.17, 143.30, 155.32, 159.21, 191.83. M.p.
174.9–179.8 ◦C. HRMS (ESI)m/z calcd. for C16H20O3 [M+H]+: 261.1485, found: 261.1489.

5.1.9. Synthesis of 4,4-Diethyl-5,8-dihydroxy-2,6,7-trimethylnaphthalen-1(4H)-one (10)

Column flash chromatography on silica gel allowed for the isolation of 8 (yellow solid,
67% yield). 1H NMR δ: 0.51 (t, J = 7.44, 3H), 1.55 (dq, J1 = 7.5 Hz, J2 = 13.5 Hz, 2H), 2.04
(d, J = 1.1 Hz, 3H), 2.23 (s, 3H), 2.24 (s, 3H), 2.72 (dq, J1 = 7.5 Hz, J2 = 13.5 Hz, 2H), 4.35
(s, OH), 6.41 (d, J = 1.1, 1H), 13.45 (s, OH). 13C NMR δ: 9.48, 11.64, 13.01, 15.69, 31.00, 47.76,
115.28, 123.29, 128.36, 130.69, 134.36, 143.14, 155.13, 155.24, 192.26. M.p. 186.1–187.2 ◦C.
HRMS (ESI)m/z calcd. for C17H22O3 [M+H]+: 275.1642, found: 275.1643.

5.2. Antioxidant and Enzymatic Inhibitory Assays
5.2.1. ORAC Assays

The antioxidant activity was determined by ORAC (oxygen radical absorbance capacity)
assays [61]. Briefly, the antioxidant capacity for ORAC-FL was estimated by measuring
the changes in fluorescence after 120 min of reaction with the radical. Assays were per-
formed using a 96-well microplate in a Synergy H1 hybrid multi-mode microplate reader
(Biotek, Winooski, VT, USA), and the results were expressed as µmol Trolox 100 g−1 DW.
Three replicates were accomplished for each analysis.

5.2.2. α-Glucosidase Inhibitory Activity

The inhibition of α-glucosidase was determined following a previous method [62]
using p-nitrophenyl α-D-glucopyranoside as a substrate. The reaction mixture contained
160 µL of 0.1 M sodium phosphate buffer (pH = 6.9), 5 µL of enzyme (5.46 U/mL), and
polyphenolic extract (0.17–1.36 µg/mL). After the pre-incubation of the reaction mixture
on ice for 5 min, the enzyme reaction was started by adding 5 µL of 25 mM p-nitrophenyl
α-D-glucopyranoside into this mixture. The reaction was incubated for 15 min at 37 ◦C.
Then, 80 µL of 0.2 M sodium carbonate was added. The absorbance was measured at
405 nm in a microplate reader (Biotek ELx808, Agilent, Santa Clara, CA, USA). Enzyme
inhibition was calculated using the following equation: % inhibition = (A0 − As)/A0 × 100,
where A0 is the absorbance of the control (blank, without extract) and As is the absorbance
in presence of the extract. IC50 values denote the µg GAE/mL required to inhibit the
enzyme by 50%.

5.3. Quantum Chemical Calculations

Calculations were achieved using the Gaussian 09 software [63], at density functional
theory (DFT) M06-2X/6-311+G(d,p) level. No imaginary vibrational frequencies were
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found at the optimized geometries, indicating that they are the true minimal of the potential
energy surface. The calculated thermodynamic parameters were obtained as follows:

• Bond dissociation enthalpy (BDE): H(RO•) + H(H•) − H(ROH);
• Ionization potential (IP): H(ROH•+) + H(e−) − H(ROH);
• Proton affinity (PA): H(RO−) + H(H+) − H(ROH);
• Electron transfer enthalpy (ETE): H(RO•) + H(e−) − H(RO−).

where H(RO•), H(ROH), and H(ROH•+) correspond to the enthalpies of the neutral radical
and the neutral and radical cation H(RO−) of the compounds, while H(e−), H(H+) and
H(H•) correspond to enthalpies of the electron, proton, and radical hydrogen.

5.4. Molecular Docking

Molecules 1 to 10 were sketched and prepared using Maestro and LigPrep (Schrödinger
Release 2022-1: Maestro, LigPrep Schrödinger, LLC, New York, NY, USA, 2021), gener-
ating all molecules without adding charges. ConfGen [64] was used to generate at most
10 conformers per molecule. Protein–ligand docking was performed using Glide software
(version 9.0, Schrödinger, LLC, New York, NY, USA, 2021) [65,66]. The binding site was
defined by the crystallographic structure obtained for alpha-glucosidase in a complex
with acarbose (PDB code: 3W37). Before docking calculations, the protein was prepared
using Maestro Protein Preparation Wizard [67] by removing ligands, metals, and water
molecules; adding hydrogens; and ionizing residues at pH 7.4. the minimization of the pro-
tein structure was conducted with an OPLS4 force field. The molecules were then prepared
using the OPLS force field to minimize energy. The grid box was defined using the ligand
cocrystallized in α-glucosidase as the center of the box. The docking was performed with
the Glide standard precision (SP) function [68] and the top-10 poses per docked ligands
were selected and subjected to postprocessing and rescoring with the molecular mechanics-
generalized Born surface area (MM-GBSA) with Prime [69]. This computational method
combines molecular mechanics energy and implicit solvation models, which enable the
docking results to be rescored and correlated with the experimental activities (IC50). The
predicted binding energies (∆Gbind) between the ligands and the receptor were calculated
as previously reported [70].

5.5. Cell Culture Conditions

Caco-2 cells were grown in Dulbecco’s modified Eagle’s Medium/Nutrient Mix-
ture F-12 (D-MEM/F-12), supplemented with 5% fetal bovine serum (FBS), penicillin
(100 IU/mL), streptomycin (100 µg/mL), and nonessential amino acid solution 1% (GIBCO,
Thermo Fisher Scientific, Grand Island). The culture media contained no exogenous pyru-
vate supplementation, and the cells were maintained in a humidified atmosphere at 37 ◦C
and 5% CO2.

5.6. MTT Assay

The cell proliferation was determined using the MTT assay. The cells were incubated
in 96-well plates at 7000 cells per well and incubated for 24 h. The cells were treated for 24 h
with compounds (1, 5, 10, 30, 50, and 100 µM). After treatment, the culture medium was
removed, and the cells were incubated with MTT for 1 h at 37 ◦C. Finally, 100 µL of DMSO
was added and measured by spectrophotometry at 570 nm, as previously described [71].

5.7. Determination of Extracellular Acidification Rate and Oxygen Consumption Rate in Real-Time

To analyze the extracellular acidification rate (ECAR), Caco-2 cells (10,000 cells/well)
were seeded on XFe96 V3-PS multi-well plates and kept for 24 h at 37 ◦C in 5% CO2 with
a DMEM culture medium supplemented with FBS. After 24 h, the cells were stimulated
by compounds at 100 µM for 24 h. Then, the culture medium was replaced with assay
media (unbuffered DMEM without red phenol, with 4 mM glutamine and 10 mM glucose,
pH = 7.4) 1 h before the assay. Glycolysis was evaluated by the sequential injection of
10 mM glucose, 1 µM oligomycin, and 100 mM 2-deoxy-D-glucose (2-DG), and ECAR was
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analyzed using specific excitation and emission wavelengths of protons (470/530 nm). To
study the mitochondrial function, the sequential injection of 1 µM oligomycin, 250 nM
FCCP, 1 µM rotenone, and 1 µM antimycin A was added. The oxygen consumption rate
(OCR) measurements were made with the specific excitation and emission wavelengths of
the fluorescent probes for oxygen (532/650 nm) using a Seahorse XFe96 Analyzer (Seahorse
Agilent, USA), and OCR and ECAR data were normalized by protein content/well, which
was determined using a BCA kit [55]. Each experiment was performed at least in triplicate.
The OCR/ECAR data analysis and dendrograms were performed using XLSTAT software
(version 2023.2.1414, Lumivero, New York, NY, USA).

5.8. Determination of Cytosolic and Mitochondrial ROS (mtROS)

The mtROS and ROS levels were measured using MitoSOX® Red Mitochondrial Superox-
ide (Invitrogen, Carlsbad, CA, USA) and Invitrogen™ Dihydroethidium (Hydroethidine, DHE)
probes, respectively. The Caco-2 cells were incubated in 12-well plates at 50,000 cells for
24 h. The cells were treated with compounds 5 and 10 at 100 µM and 200 µM for 24 h.
Next, the cells were incubated with 25 µM menadione 25 µM for 1 h, and then the cells
were washed with PBS and incubated with MitoSOX Red® (5 µM) or DHE (5 µM) for
30 min. Then, they were recollected, and washed, and the fluorescence was detected by
flow cytometry according to Urra et al., 2018 [31].

5.9. Statistics

The data are expressed as the mean ± standard deviation (SD) of three independent
experiments. Statistical analysis was performed using one-way or two-way ANOVA with
Bonferroni’s post-test for pairwise comparisons with Graph Pad Prism 4.03 (GraphPad
Software, San Diego, CA, USA). To study the differences between variables, the Pear-
son correlation coefficient was used. The data were considered statistically significant
when p < 0.05.
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