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Abstract: Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time 

due to their multifactorial character. Among these pathologies, Alzheimer’s disease (AD) is of spe-

cial relevance, and despite the existence of approved drugs for its treatment, there is still no efficient 

pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain 

disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover 

new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many 

physiological pathways involved, the most effective approach to modulate more than one of them 

in a relevant manner and without undesirable consequences is through polypharmacology. In this 

field, there has been significant progress in recent years in terms of pharmacoinformatics tools that 

allow the discovery of bioactive molecules with polypharmacological profiles without the need to 

spend a long time and excessive resources on complex experimental designs, making the drug de-

sign and development pipeline more efficient. In this review, we present from different perspectives 

how pharmacoinformatics tools can be useful when drug design programs are designed to tackle 

complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial 

intelligence and new trends, as well as different databases and software with their main results, 

emphasizing the importance of coupling wet and dry approaches in drug design and development 

processes. 
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1. Introduction 

The World Health Organization (WHO) defines Alzheimer’s disease (AD) as a neu-

rodegenerative disease, which is of unknown etiology characterized by cognitive impair-

ment of memory and cognitive function [1,2], caused by a multiplicity of conditions or 

pathologies that lead to progressive and irreversible neurodegeneration process [3]. 

In this context, different hypotheses have been developed to define its physiopatho-

logical character. In recent decades, two neuropathological mechanisms have been stud-

ied and characterized in the brains of AD patients. First, the formation of amyloid plaques 

involving amyloid-β (Aβ) aggregation and deposition [4], and second, the formation of 

neurofibrillary tangles (NFTs) due to hyperphosphorylation and aggregation of tau pro-

tein [5]. In addition, the loss of connections between neurons in the brain is also involved 

[6] (Figure 1). Aβ and NFTs are estimated to begin about 10–20 years before cognitive 

function impairment manifests [7,8], in line with the most relevant hypotheses for this 

disease. 

 

Figure 1. Pathophysiology of the main hypotheses of Alzheimer’s disease. Created with BioRen-

der.com. 

1.1. Main Hypotheses Currently Approved for AD 

1.1.1. Cholinergic Hypothesis of AD 

This is the first hypothesis, which suggests that a dysfunction of the cholinergic neu-

rons, which contributes significantly to the cognitive failure observed in AD, is the cause 

of the disease. However, some studies also claim that acetylcholinesterase (AChE) activity 

is up-regulated or unaffected in patients with mild cognitive impairment or early AD, 

leading to question the validity of this hypothesis [9]. 
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1.1.2. Amyloid Hypothesis of AD 

Aβ peptide is produced by abnormal cleavage of amyloid precursor protein (APP) (a 

transmembrane glycoprotein expressed in different cells, including neurons and glia). Un-

der normal physiological conditions, the cleaved products of APP are soluble peptides 

easily eliminated by the body. However, in AD, APP is cleaved by α-secretase, β-secretase, 

and γ-secretase, generating insoluble peptides which are then secreted by neurons into 

the extracellular space where senile plaques are formed due to accumulation, oligomeri-

zation, and deposition of the Aβ peptide, promoting a neuroinflammatory process and 

generating structural damages [10]. Although this hypothesis has been supported for sev-

eral years, there is controversy regarding the details of amyloid pathology and its rela-

tionship with AD because some patients have been found with amyloid pathology but 

without AD symptoms [11]. Along with this, the different oligomers produced by the de-

ficient activity of the secretase have been investigated, where some of the different sizes, 

in different concentrations, and with different outcomes in patients have been discovered. 

Initially, it was believed that beta-amyloid consisted of a maximum of 42 amino acids [12], 

but in 2006 Lesné et al., had published an article reporting the finding of an Aβ*56 oligo-

mers, which would have direct consequences on the memory function of test mice [13]. 

Despite the efforts of different scientists to elucidate this point, some of them have not 

been able to reproduce results on this oligomer, and others have found contrasting an-

swers [14]. Research remains to be performed on the incidences of the length of the oligo-

mer, its solubility characteristic, its concentration in different organisms depending on the 

pathology, and its relationship with Alzheimer’s disease to be able to restructure this hy-

pothesis in an effective way. 

1.1.3. Tau Hypothesis of AD 

Tau protein is found mainly in axons. Its function relates to the binding of microtu-

bules to stabilize the neuronal cytoskeleton. Under AD, the tau hyperphosphorylation 

form decreases its affinity for microtubules, causing it to aggregate in an insoluble form 

(known as paired helical filaments), resulting in the transformation of tau into NFTs. In 

the formation of NFTs, the hyperphosphorylated tau disrupt microtubule function, which 

leads to impaired axonal transport, blocking the transport of nutrients and essential mol-

ecules within neurons [15]. 

1.2. Other Hypotheses and New State of the Art in Pathophysiology of AD 

In addition to the pathophysiological hypotheses that have recently been accepted to 

explain the mechanisms of AD, there are several hypotheses that have gained different 

weight depending on the studies they are presented. For example, hypertension and car-

diovascular diseases have been related to AD, giving rise to the angiotensin and vascular 

hypothesis, respectively. The former describes the relationship between the renin–angio-

tensin system, whose components are altered in AD due to its important role in blood 

pressure and cardiovascular regulation [16]. The second relates to the lack of blood flow 

to the brain with vascular dementia and consequent cell death, where cellular aging and 

brain trauma could be risk factors for AD [17]. On the other hand, hypotheses such as 

oxidative stress [18] explain how abnormalities in neuronal cells would increase under 

this condition, which leads in many of these cases to some apoptotic mechanisms associ-

ated with cognitive dysfunction and dementia. Moreover, some hypotheses are more re-

lated to environmental and lifestyle factors, such as the mercury hypothesis [19], which 

explains that mercury contamination of the body is capable of causing many of the various 

alterations present in Alzheimer’s patients. Likewise, the increase in cholesterol at the 

brain level [20] and the lack of vitamin D [21] are two hypotheses that would explain the 

dysfunctionality of the organism that is characteristic of AD. In the case of vitamin D, its 

alterations can mimic the amyloid pathways, which could also be affected by alterations 

in calcium levels [22], forming other hypotheses associated with this complex disease. In 
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recent literature, there are also more specific hypotheses, such as the hypothesis of mito-

chondria-associated endoplasmic reticulum membranes [23] and how the functions lo-

cated in this part of the cell increase their expression in Alzheimer’s patients. There are 

also some related to exposure to microorganisms of more biological origin or the viral 

hypothesis that relates the presence of common viruses such as herpes to the development 

of the other pathological hypotheses of AD [24]. 

All this evidence allows us to observe the complex nature of AD. There has been a 

limited success (almost none) in drug development and repurposing efforts for its effec-

tive treatment, in part due to the fact that the drug design process targeting AD has been 

flanked by a reductionist “1-target <–> 1-drug” model. So far, this approach has not pro-

vided an effective therapeutic alternative, possibly due to the multifactorial nature of this 

pathology. Therefore, there is a need to shift the focus of current AD drug discovery re-

search towards designing better therapeutic solutions for simultaneously targeting the 

multiple pathological mechanisms responsible for the initiation and advancement of AD. 

Regarding the efforts made by the scientific community in recent years to deal with this 

challenge and this multifactorial disease, either from clinical treatments, drug design, and 

laboratory tests (among others), it is important to note that currently, about 2880 Alz-

heimer-related projects are being developed, according to the clinical trials database. As 

shown in Figure 2, only half of them have been completed, 5% are active, and approxi-

mately 19% are in the start-up phase. This shows the high interest there is currently in 

conducting clinical research in this area. In these projects, several countries have taken the 

lead, including the United States (1479), France (245), China (89), Canada (86), Korea (68), 

the United Kingdom (67), Spain (66), and Germany (55) (Data retrieved on July 2022 from 

www.clinicaltrials.gov). 

 

Figure 2. Percentage and status of AD-related projects that have been carried out in the last two 

decades according to the ClinicalTrials.gov database. Data retrieved on July 2022. 

Within the complex research that aims to face this challenge, drug design by phar-

macoinformatics-aided tools has taken on significant relevance. Currently, several strate-

gies, methods, and tools have been developed to progress in this field, which can be found 

in different reviews where their scopes are specified [25,26]. In this review, three strategies 

to improve the pharmacological AD space are highlighted because of their relevance in 

drug design as well as AD. First, Multi Target Directed Ligands (MTDLs) approach fo-

cuses on designing drugs that simultaneously hit several relevant targets [27]. Second, 

drug repurposing, which refers to revealing new uses (or purposes) for prescribed ligands 

or drugs [28], and the third strategy is called systems pharmacology, which takes ad-

vantage of the huge amount of biological data, available mathematical and pharmacology 

models to propose or predict an optimal therapy with the integrative vision of the systems 

approach. An analytical description of the advantages and limitations is described else-

where [29,30]. 

These approaches use several computational techniques to aim their purposes, such 

as molecular docking to predict the best conformational stage of a small molecule into a 

macromolecule [31,32], together with virtual screening, used to predict putative bioactive 
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ligands from large databases of small molecules [33–35], and pharmacophore modeling, 

which represents a three-dimensional ensemble of chemically defined interactions of a 

compound with its possible receptor [36,37]. This concept is commonly applied to perform 

ADME-Tox prediction, side effects modeling, off-target prediction, target identifications, 

and virtual screening campaigns. Finally, molecular dynamics simulation is one of the 

most computationally expensive and time-consuming classical techniques commonly ap-

plied in computer-aided drug design (CADD). It uses the structural information available 

for the receptor and its ligand while employing a forcefield to predict the evolution of the 

system along a given simulation time [38,39]. Additionally, due to the relevance of Alz-

heimer’s disease within neurodegenerative diseases (NDD) and drug design, different da-

tabases and software have been developed exclusively for the study of Alzheimer’s dis-

ease; some examples of these are listed in Table 1. 

Table 1. Examples of software and databases developed exclusively for Alzheimer’s disease drug 

design research. 

Software/Platform Description Link Reference 

AlzhCPI 

With HTML and CSS  

technology that provides 

models and important frag-

ments for MTDLs against AD 

http://rcidm.org/AlzhCPI [40] 

AlzPlatform 
AD-specific chemogenomics 

database based on ligands 
http://www.cbligand.org/AD  [41] 

HENA 

Heterogeneous network-

based dataset for  

Alzheimer’s disease 

https://github.com/esugis/hena  [42] 

NIAGADS 

National Institute on Aging 

Genetics of Alzheimer’s  

Disease Data Storage Site 

https://www.niagads.org/ [43] 

2. Advances Achieved by Bioinformatics Tools in the Diagnosis of AD 

One of the main difficulties in the treatment of this disease is that an effective way to 

diagnose it in the early stages of the patient’s life has not yet been determined. On the 

contrary, it is only possible to confirm the development of the disease post-mortem by 

detecting some of the pathophysiological characteristics of AD in the brains of patients 

[44]. The key steps in the diagnosis of AD include consideration of the patient’s clinical 

history, physical examination, neuropsychological testing, and neuroimaging. It has been 

studied and concluded by L. Guzman-Martinez et al. that there are genes that confer sus-

ceptibility to this disease and that they are related to lifestyle, being healthy living such as 

exercise, balanced diet, and constant brain activity a way to mitigate the probabilities of 

suffering AD [45]. Along with this, it was determined that prolonged confinement in both 

young people and adults could increase the risk of suffering from this disease precisely 

because of the absence of the key aspects of a healthy lifestyle [45]. 

A common practice in the diagnosis of AD is the use of Magnetic Resonance Imaging 

(MRI). The use of these images represents a challenge, given to high similarities across 

stages of dementia in AD brains, as well as with healthy brains of older people [2]. In this 

sense, a way to refine this is through bioinformatics, which is being used to achieve a more 

accurate AD diagnosis using MRI images without the intervention of the human eye, lead-

ing to early diagnosis and better therapeutic efficacies. This improvement has been ac-

complished by implementing deep learning (DL) technologies to identify changes that 

occur in the brain even before the first symptoms arrive, such as the change of the early 

medial temporal lobe, a pattern characteristic of AD caused by both amyloid-β plaques, 

and neurofibrillary tangles accumulation [46]. Nevertheless, bioinformatics is not only be-

ing used for AD diagnosis based on image analysis; the screening and identification of 

key genes using gene set enrichment analysis (GSEA) are also being examined for early 
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AD diagnosis in clinical practice [47]. Based on functional analyses, differentially ex-

pressed genes and microRNAs have been proposed to be closely related to AD through a 

comparison against pathology databases such as the Comparative Toxicogenomics Data-

base (CTD) [48], which integrate large amounts of data about AD and promote the dis-

covery of new biomarkers. Some other AD databases are hu.MAP [49], ADNI [50], NI-

AGADS [43], and HENA [42]. 

On the other hand, clinical biomarkers such as Aβ42, T-tau, and P-tau proteins are 

extracted from cerebrospinal fluid to detect the pathophysiology of AD. However, this 

method is too invasive and painful for the patient. Therefore, there is a great effort to 

discover biomarkers for AD diagnosis that can be detected using less invasive methods 

[51]. In this sense, techniques on different molecular levels, such as genomics (DNA), tran-

scriptomics (mRNA and non-coding RNAs), proteomics (proteins), and metabolomics 

(metabolites), are being implemented to identify the pathways that lead to neuronal death 

and the biomolecular markers associated with the AD neuropathology [52]. 

Omics analysis approaches are mainly focused on statistical analysis or machine 

learning (ML) analysis. ML analysis integrates complex datasets derived from omics tech-

niques in scenarios using supervised (e.g., Random Forest and Artificial Neural Network) 

or unsupervised algorithms (e.g., Hierarchical Clustering, k-means Clustering, and Arti-

ficial Neural Network), where traditional statistical methods are insufficient [52]. The use 

of omics has given rise to a large number of molecular profiles and datasets, which are 

crucial not only to an early diagnosis but also for understanding the complexity of AD 

and, eventually, for creating a personalized treatment using precision medicine [52]. 

An irrefutable fact is that, by the time AD is detected and diagnosed, it is probably 

too late to cure the patient because there is a high neurodegeneration level. For that rea-

son, therapies are also focused on the early detection of AD [53–55]. Although NFTs and 

Aβ in the brain represent major hallmarks of NDD, therapies aiming to reduce the amy-

loid have not shown any breakthrough in reversing mild cognitive impairment [3]. This 

background allows us to understand that there is no clear and complete statement regard-

ing the causality of AD [56]. Therefore, in addition to studying this aspect in depth, it is 

indispensable to have a method for early diagnosis and novel therapy. Clearly, out-of-the-

box alternatives to obtain therapeutic results from a system-pharmacology drug design 

perspective must be sought using data generated over the decades. 

3. Current Therapeutic Strategies against AD 

The treatment of this disease has been approached from different points, from un-

conventional investigations, such as alternative therapies, to classic pharmacological ones. 

Table 2 shows a summary and representative description of the type of treatments that 

have been carried out in the last two decades to improve the condition of this disease and 

try to control it. 
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Table 2. Description and number of treatments against Alzheimer’s disease (Data retrieved on July 

2022 from www.clinicaltrials.gov). 

Treatment Type 
Number of 

Associated Projects 
Description 

Drug 1353 

Analytical/experimental study. The patient is treated with different drugs. In the cases 

reported, 105 have used donepezil, 4 rivastigmine, and 4 galantamine, either in the 

absence of or in addition to other drugs and treatments. 

Behavioral 425 

Observational study. The patient undergoes therapies, lifestyle changes, sports, and 

cognitive activities to improve memory. It may or may not be accompanied by other types 

of therapies. Family therapy and psycho-emotional support are included. 

Device 263 

Interventional study where devices such as transcranial alternating current stimulation 

(tACS) and deep brain stimulation (DBS) are used to evaluate possible improvements in 

patient responses. 

Procedure 112 The patient undergoes procedures such as yoga, hypnosis, surgery, or acupuncture. 

Dietary 

supplement 
65 

New types of diets are implemented for the patient with specific supplements such as 

vitamin E, curcumin, and omega 3, among others.  

Considering that drugs are the most widely used method in the treatments described 

above and that most of the approved drugs are small molecules, it is necessary to mention 

that there are six drugs that have been approved by the U.S. Food and Drug 

Administration (FDA) for the treatment of AD. These include donepezil, rivastigmine, 

and galantamine, which are acetylcholinesterase inhibitors (AChEIs) preferentially used 

during the early mild and moderate phases of the disease [57], and whose chemical 

structures are shown in Figure 3. Unfortunately, these drugs only temporarily alleviate 

cognitive symptoms without having an effect on the progression of this disease [58]. In 

advanced stages, cholinesterase inhibitors are often combined with memantine, a non-

competitive N-methyl-D-aspartate (NMDA) receptor antagonist [59,60]. Another relevant 

cholinesterase inhibitor is tacrine, the first drug approved for AD [61], which has been 

withdrawn from treatments [62] because although it generates cognitive improvements 

as a palliative benefit, it was discovered at the clinical level that it could cause 

hepatotoxicity [63]. This controversy of having a structure that generates the desired 

improvements but also has strong side effects gave rise to research into new tacrine-based 

derivatives that could solve this problem [64–67]. 

 

Figure 3. FDA-approved drugs for the treatment of Alzheimer’s disease. Small molecules (tacrine, 

memantine, rivastigmine, donepezil, and galantamine) and the monoclonal antibody aducanumab 

(where chain A is shown in green, chain B in blue and chain C in cyan.) PDB code: 6CO3 [68]. 

Although these drugs cannot delay neurodegenerative progression, they temporarily 

improve the cognitive function of cholinergic and glutamatergic neurotransmission [69], 

improving the patient’s quality of life in a palliative way. However, they have the 

inconvenience of presenting some side effects such as gastrointestinal complications [70], 
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muscle problems in anesthetized patients, slow heartbeat and fainting, as well as seizures 

[71]. 

Recently (June 2021), the FDA approved Biogen’s drug aducanumab (AduhelmTM), a 

disease-modifying monoclonal antibody that, upon entry into the brain, interacts with 

parenchymal amyloid and decreases the concentration of Aβ in a dose-dependent manner 

[72]. In the same year, the FDA limited its approval only to patients with mild cognitive 

impairment or mild dementia due to AD [73]. Since its fast approval in 2021, it has been 

controversial in the health care field and the scientific community [74]. However, the 

approval of aducanumab has paved the way for more extensive and reliable development 

of monoclonal antibodies to modulate multiple AD targets in the future. 

Over the last decade, some drug delivery strategies such as nanoparticles have been 

proposed, which have become useful for blood–brain barrier (BBB) transport, turning into 

an important approach to overcome the side effects problem, reducing the impact of these 

drugs on the peripheral level. In AD, it has been shown that by using nano-based drug 

delivery, it has been possible to decrease Aβ production, aggregation, and clearance, as 

well as tau phosphorylation and packaging [75], in which significant progress has been 

demonstrated [76]. Despite all efforts, it has not yet been possible to identify the reason that 

clinical trials against AD continue to fail [77]. However, it is becoming clear from research 

in the last decades that the use of polypharmacological therapies could be a starting point 

to deal with the multifactorial nature of complex diseases such as AD. Regarding the 

number of molecules currently under development, both small molecules and antibodies, 

there are about 200 in clinical trials that could offer some hope for the future (data retrieved 

in July 2022 from the ChEMBL database). Figure 4 shows a graphical summary of the types 

of molecules being studied and the phase in which each one is found. 

 

Figure 4. Graphical representation of the number and status of molecules related to AD. (Data 

retrieved in July 2022 from ChEMBL database). 

4. Computational Polypharmacology Applied to Multitarget Drug Design in AD 

Polypharmacology is defined as the design or use of pharmaceutical agents that act 

on multiple targets or disease pathways [78]. Recent research in pharmacology has 

changed the paradigm of drug discovery for complex and multifactorial diseases such as 

cancer, mood disorders, and NDD, given that these diseases result from a complex 

network of molecular events not based on a single target. Although this search has been 

commonly undertaken from a ligand synthesis perspective, computational approaches 

have lately become consolidated in multitarget drug discovery [79]. These methods stem 

from the 2D or 3D shape and chemical similarity evaluation, target and binding site 

similarity assessment, graph theory and modeling, docking methods, pharmacophore 
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analyses, machine-learning algorithms, and chemogenomics [79], offering a complete 

approach to study the binding mechanisms and interactions of certain molecules to the 

targets to be modulated. Therefore, several authors have worked on the use of 

computational polypharmacology methods for the design and development of drugs for 

the treatment of Alzheimer’s disease. 

In 2020, Oddson et al. [80] developed a high-performance virtual screening (HTVS) 

to identify new modulators of two targets involved in AD: AChE and alpha-7 nicotinic 

acetylcholine receptors (nAChR α7), confirming that the HTVS approach can be applied 

in the search for new drugs with dual activity. Similar to the research of Montanari [57], 

where they also performed molecular docking and molecular dynamics to study the 

multitarget behavior of a series of coumarin-based derivatives. Another research 

performed in 2021 studied about 134 secondary metabolites of Gongronema latifolium 

leaves using HTVS against protein kinases LRRK2, GSK3β, and MAPK14, which have 

been associated with the onset of Parkinson’s and Alzheimer’s disease [81], providing a 

complete analysis through different computational tools that are of great use for 

polypharmacology. Following the same line, recently, Nozal et al. combined fragments that 

inhibit key protein kinases involved in the main molecular pathophysiology pathways of 

AD, such as tau aggregation, neuroinflammation, and decreased neurogenesis, and 

developed novel MTDLs with the capability to inhibit LRRK2, CK1ẟ, and GSKβ kinases as 

well as BACE1. They reported well-balanced MTDLs with in vitro activity in three different 

relevant targets and efficacy in two cellular models of AD. Furthermore, computational 

studies confirmed how these compounds adequately accommodate into the long and 

rather narrow BACE1 catalytic site. Finally, they employed in situ click chemistry using 

BACE1 as protein template as a versatile synthetic tool that allowed us to obtain further 

MTDLs [82]. 

These types of findings show how computational polypharmacology (always 

coupled with experimental validation) can contribute to a thorough understanding of the 

binding mode of ligands at their binding site, helping to reveal indispensable details for 

the proper design of MTDLs. 

Multi-Target Directed Ligands (MTDLs) for AD 

MTDLs can simultaneously modulate two or more targets, implying that these 

targets may have structural or electrostatic similarities—common pharmacophoric 

features—which enables them to be modulated by the same chemical entity [83]. There is 

currently much interest in the development of multitarget drugs for AD. As shown in 

Figure 5, more than 700,000 active compounds are associated with more than 2000 targets 

involved in the disease, where a large percentage of them are able to modulate two or 

more targets simultaneously. Further information was deposited in the Open Science 

Framework project “New drug design avenues targeting Alzheimer’s disease by 

pharmacoinformatics-aided tools” (https://osf.io/by86r/). 
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Figure 5. Number of active compounds related to Alzheimer’s disease and the respective number 

of targets they can modulate simultaneously (Data retrieved in August 2022 from ChEMBL database 

v31). To process the data, first targets related to AD were extracted from the Open Target Platform, 

then data was enriched with Uniprot IDs via Uniprot API and a local mirror of ChEMBL database 

v31. For those proteins with bioactive reports or reported as part of drug mechanisms on ChEMBL, 

we retrieved the targets and drugs names, compounds ChEMBL IDs, pchembl_value related to the 

activity, and the drug or compound phases of developments as itself and for the indication 

(Alzheimer in this case). Uniprot API queries, local ChEMBL queries, and data handling were 

performed with KNIME 4.6.1 platform. Detailed information can be found at https://osf.io/by86r/ 

On the other hand, similarities between interaction and binding sites and their main 

characteristics for ligands and specific target–ligand complexes should be taken into 

account when multitarget drug design campaigns are being implemented, as reported by 

Nuñez-Vivanco et al. [84] for dopamine and/or serotonin transporters and MAO enzymes 

through polypharmacology tools.  

The ligand-based drug design (LBDD) approach is often used to outline novel 

MTDLs [85], and it is possible to design hybrids based on different ligands by observing 

their structure. In the MTDLs design pipeline, there are three possible ways to conjugate 

the desired parts by linking, fusing, or merging, which will result in a hybrid molecule 

with modulated properties according to the proposed structure and bonding method, as 

shown in Figure 6. A well-known case relates to the tacrine hybrids, where different 

bioactive compounds were obtained by using tacrine (an MTDL with activity against 

AChE–IC50 = 0.42 µM and BuChE–IC50 = 45.8 µM [65]) as the principal scaffold. For 

instance, tacrine–melatonin and tacrine–hydroxyquinoline hybrids present antioxidant 

properties and maintain cholinesterase inhibitory activity [86]. Tacrine–flavonoid hybrids 

have shown a very prominent inhibitory activity against BACE1 and AChE (low pM 

range), which are ~10,000-fold more potent than the tacrine precursor [87]. Novel hybrids 

in this category have been designed and synthesized by the covalent linking of tacrine and 

the Aβ aggregation inhibitor dipicolylamine. The products are dimers with a potent 

inhibitory effect on AChE and Aβ, decreasing tau phosphorylation, preventing synaptic 

toxicity, and inhibiting neuroinflammation [88]. 
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Figure 6. Possible strategies to design MTDLs for AD: Linked [86], fused [66], and merged [89]. 

MTDLs developed by structure-based drug design (SBDD) methods [90,91] have 

proven to be successful due to the increasing availability of structural data for key targets 

in AD (crystallographic, NMR, and CryoEM structures). SBDD methods have led to 

understanding the importance, for example, of pi-interactions to inhibit AChE in the 

anionic catalytic site (orthosteric binding site) and the peripheral anionic site (allosteric 

binding site). These approaches also led to the identification of key residues at the BACE1 

catalytic site. Dominguez et al., reported, the MTDL compound 3f with activity against 

AChE (IC50 = 14 µM), BuChE (IC50 = 7.1 µM), and BACE1 (IC50 = 3.1 µM), as well as the 

capability to inhibit Aβ peptide (28% at 100 µM) [91].  

Due to the growing interest in finding structural similarities among key targets, 

several computational polypharmacological tools, such as Geomfinder [92], 3D-PP [93], 

ProBiS [94], ProCare [95], PocketMatch [96], and other tools and protocols have been 

described and discussed in the literature to tackle the binding site (BS) comparison 

problem [97–100]. The efficiency proven by these methods demonstrates the need to 

address the study of common characteristics among both ligands and targets to establish 

a rational design of MTDLs through computational polypharmacology. Some examples 

of compounds designed according to these strategies, and which have shown multitarget 

activity in AD are shown in Table 3. 
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Table 3. Examples of MTDLs and their biological activity against targets involved in Alzheimer’s 

disease. 

Compound Hybrid-Related 
Biological Activity 

IC50 (µM) 
Reference 

 

Carbazole-curcumin 
AChE: 6.9 ± 0.9 

BuChE: 2.8 ± 0.4 
[101] 

 

Tacrine–Anacardic 

acid 

AChE: 2.54 ± 0.07 

BuChE: 0.265 ± 0.027 
[27] 

 

Rivastigmine 

AchE at 1 µM = 24.43% 

BuChe at 1 µM = 72.30% 

At 10 µM 2.2% of Aβ self aggregation 

[102] 

 

Donepezil–curcumin 
AChE: 0.46  

BuChE: 24.97  
[103] 

 

Donepezil 
AChE: 0.029  

BACE1: 0.33 
[104] 

 

Cyclic amide group 
BACE1: 16.0  

GSK-3: 7.1 
[105] 

 

Sargaquinoic-acid 

AChE: 69.3  

BuChE: 10.5  

BACE1: 12.1 

[106] 

5. Pharmacoinformatics Tools in Drug Design against AD 

The application of well-known pharmacological models to study how different 

targets are modulated, together with the tools provided by medicinal chemistry, is 

fundamental to exploring the chemical space of new bioactive compounds. Furthermore, 

the use of software and servers such as ligand and protein databases allow for simulating 

the interaction between drug–protein and/or protein–protein, in which it will be possible 
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to perform the analysis of networks and the implementation of ML models. When framed 

in the paradigm of systems pharmacology, these methods are applied to address the 

different phases of the drug discovery process against AD (preclinical and clinical phases) 

and could be the key to overcoming the current low success rate when designing drugs 

against this complex and devastating pathology. In recent years, pharmacoinformatics 

tools have been used to enhance drug design processes, i.e., to identify new targets in AD 

[107] and neurodegenerative dementias [108], to study traditional Chinese medicine in 

AD [109], to discover new MTDLs for AD by analyzing ligand-protein interaction 

networks [110], and to explore new mechanistic insights into AD through protein–protein 

interaction networks (PPIs) [111]. Pharmacoinformatics has undergone exponential 

growth, changing the way drug research and design are carried out. Currently, different 

servers used for pharmacoinformatics purposes have been built to support the discovery 

of novel therapeutic alternatives against AD. 

Finally, all these tools, made up of databases, software, and different analysis 

methods, have been growing along with technology and scientific innovation, allowing 

the optimization of resources and accurate data validation, among other things. In this 

sense, some strategies, such as pharmacophore modeling and the use of artificial 

intelligence, are crucial stones in the construction of these new trends. 

5.1. New Opportunities in Drug Discovery—Pharmacophore Modeling 

Macromolecular structures (such as proteins) bind to small organic molecules, where 

they can trigger functional modulations and, thus, biological responses. The union of their 

ligands with their macromolecular targets is mainly based on the set of chemical 

interactions, such as hydrogen bonds, ionic, or lipophilic contacts. Thus, 3D 

pharmacophores represent an intuitive and powerful description of these interaction 

patterns [112]. The official IUPAC definition for this term describes pharmacophores as 

“the ensemble of steric and electronic features that is necessary to ensure the optimal 

supra-molecular interactions with a specific biological target structure and to trigger (or 

to block) its biological response” [113,114]. 

Moreover, these pharmacophores are not a particular set of functional groups or 

structural fragments, instead are an abstract description of physicochemical, steric, and 

electronic characteristics describing properties of molecules that are indispensable for 

energetically favorable ligand-target interactions (pharmacophore features), such as 

hydrophobic areas, aromatic rings, hydrogen bond acceptors and donors, as well as 

ionizable groups [115]. If the molecules possess similar pharmacophoric patterns, these 

can therefore be assumed to be recognized by the same binding site of a given biological 

target and thus also show similar pharmacological profiles [116]. 

Pharmacophore Modeling Classification 

Pharmacophore generation can be performed by obtaining information from ligands, 

from the receptor without ligand (apo form), or from interactions described in receptor–

ligand complexes, as shown in Figure 7 and as explained next. Ligand-based modeling: 

Usually, the pharmacophore builder algorithms first perform steps where quick distance 

checking takes place. Then, a 3D alignment of different active compounds and their 

conformations is computed to compare the location of the pharmacophoric features 

[117,118]. Apo-based modeling: Molecular field-based methods could accomplish the labor 

of apo-pharmacophore modeling. First, a grid will be placed in the putative and 

predefined binding site. Then, this space will be sampled by several probes to explore 

target-probe interactions, miming the interaction of ligand functional groups and their 

target. Next, an energy calculation will take place between probes and the atoms from the 

cavity to identify favorable interactions. Finally, the local minimum of those calculations 

will be translated, such as pharmacophore features [119–121]. Complex-based modeling: 

Macromolecule–ligand systems could be available via RMN, X-ray, and/or CryoEM, as 

well as molecular modeling solutions. A set of previously defined chemical and 
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geometrics criteria will be identified and grouped into pharmacophore features [122]. 

Likewise, complex-based methods could fulfill this assignment, employing the previously 

mentioned molecular strategies [123]. 

 

Figure 7. Example of pharmacophore generation for acetylcholinesterase in complex with donepezil 

(PDB code: 1EVE). Taken and adapted from Ref. [36]. 

5.2. Machine Learning and Artificial Intelligence to Enhance Drug Design against AD 

Artificial Intelligence (AI) offers a wide variety of methods to analyze large and 

complex data in order to improve the understanding of different diseases, especially useful 

in the case of complex diseases such as AD. Among the most used AI methods is ML, 

consisting of a collection of data analysis techniques that aim to generate predictive models 

for classification, regression, and clustering. Another widely used AI method is DL which 

uses algorithms that can learn relationships between inputs and outputs by modeling highly 

non-linear interactions in higher representations at a more abstract level [124]. 

AD research using ML continues to evolve, improving performance by incorporating 

additional hybrid data types such as omics data and increasing transparency with 

explainable approaches that add insights into specific features and mechanisms related to 

the disease. AI has also been used to prioritize or infer repositionable drugs for AD, using 

DL extracting low-dimensional representations of a high-dimensional protein–protein 

interaction network to infer potential drug target genes [125], and even ML has been used 

to identify candidates for AD drug repurposing [126]. This offers a great opportunity for 

drug discovery and development, as ML approaches offer a set of tools that can improve 

decision-making for well-specified questions with abundant, high-quality data, thereby 

optimizing the development of new drugs [127]. It is also worth noting that ML methods 

are highly data-driven, and high-quality datasets are required to build suitable models. 

For example, data derived from databases such as PubChem and ChEMBL offers 

complete data related to bioactive ligands and their targets, indications, clinical phases, 

etc. Other databases, such as the Open Target Platform [128] or the Therapeutic Target 

Database [129], provide valuable information about known and explored therapeutic 

targets, the targeted disease, pathway information, and the corresponding drugs directed 

at each of these targets. Other datasets such as OASIS [130,131] and ADNI [132–135] had 

been generated to perform, for instance, early-stage AD prediction using ML models. 

As an example of the usefulness of these tools, some studies have used random forest 

and support vector machines ML algorithms, which is a type of supervised learning [136] 

as the primary method for screening gamma-secretase inhibitors (675 inhibitory and 758 

non-inhibitory compounds) using 3D structures to calculate 189 molecular descriptors, 

including constitutional, quantum chemical, topological and geometric descriptors. The 

results included 368 possible gamma-secretase inhibitors [137]. Another study developed 

a Bayesian ML model based on data available from ChEMBL and PubChem of AD-related 
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proteins, where they sought to identify a new small molecule that could be administered 

as a treatment for AD, finding GSK3β (the protein that phosphorylates the tau protein) as 

a target of interest [138]. 

6. Drug Repurposing Strategies 

One of the strategies used to face the challenge of designing drugs quickly, safely, 

and efficiently is drug repositioning. This strategy consists of assigning new indications 

for drugs that already exist and are used in some described pathology. Its advantages 

include knowledge of the drug, progress in clinical trials, and, therefore, management and 

understanding of its pharmacokinetics and the effects it may cause, according to its 

previous use [139]. As a very close example, for AD, there is the use of galantamine, one 

of the drugs approved by the FDA to treat this disease, which has its origin in the 

treatment of poliomyelitis and was repositioned for AD treatment. Similarly, fluoxetine 

and levetiracetam, among others, which have serotonin reuptake inhibitors and 

antiepileptic functions, respectively, have shown significant results in the treatment of AD 

[140]. In order to develop this strategy and perform an exhaustive search among the wide 

number of drugs that currently exist and their respective reported purposes or targets, 

pharmacoinformatics tools play a crucial role. For example, using network pharmacology 

and analyzing data from the ChEMBL database, a drug–protein interaction network 

(DPI), referring to proteins and drugs in AD, was built. It is possible to identify three 

multitarget approved drugs (rivastigmine, memantine, and donepezil), as well as five 

single-target approved drugs (aducanumab, florbetapir, galantamine, florbetaben, and 

flumetamol) currently indicated to treat AD (Figure 8). In addition, several FDA-approved 

drugs present activity against one or more AD targets, which makes them potential 

candidates for drug repurposing against AD. More detailed information about single and 

multiple drugs and AD targets can be found in Table S1. 

 

Figure 8. Drug–Protein Interaction network in AD. FDA-approved drugs (phase 4) with reported 

activity against AD-targets, data were retrieved on July 2022 from ChEMBL database (v31) using 

the “phembl_value” as search criteria. For further details, see the Supplementary Material. 

Drug repurposing has not only been used in NDD, but in general for complex 

diseases such as diabetes, psychosis, or cancer. An example of the latter is the drug 

Raltegravir as a possible complementary drug therapy, which is initially used as an HIV-

1 integrase inhibitor [141], or the drug repurposing campaigns to treat COVID-19 [142], 

which, in view of the global pandemic, requires rapid and advanced solutions. 
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Another advantage of this strategy is that in conjunction with the use of PPIs, DL, 

and ML tools, it is possible to establish a relationship between known and potential drugs 

for a given treatment, based on their structure, and also to relate the targets involved, 

which allows a key clue in the drug design challenge [143]. For example, using the 

comparison of genes through pharmacoinformatics tools, it was possible to suggest new 

drugs interacting with targets associated with NDD, such as AD. A study shows that 

through this technique, 27 drugs were identified [144], showing potential activity against 

AD, opening doors to new challenges and approaches in the development of new 

treatments. 

7. Applications of System Pharmacology in Drug Design against AD  

The contributions of system pharmacology in drug design are recent and numerous, 

highlighting the need to understand that a single target does not describe the entire 

physiopathology of a given disease and that a single drug will not provide a final solution, 

revealing that the relationship between them opens doors not only to the design but also 

to the association of symptoms from the clinical side. An excellent way to address this 

point is through systems pharmacology and the use of networks and data mining, as 

shown in Figure 9. These methods can also be used to predict new drug targets based on 

the relationship between their functions and the reported interaction profiles with known 

ligands, allowing the integration of this information into interaction maps that give a more 

comprehensive view of the key components of the pathology. This complex model also 

allows the characterization of common pharmacophore features among ligands and 

related targets, and thus possibly involved in pathology pathways. From here, it would 

be possible to work in numerous ways. For instance, with subsequent virtual screening 

(based on ligands, structures, and pharmacophores) in order to predict new potential 

protein–ligand interactions (PLI) and identify active or inactive elements and scaffolds, 

among others. In this way, it can be explored the interaction and relationship between the 

key factors of the disease. Moreover, it may be possible to discover some components that 

have been seen as secondary but could play a relevant role, making it easier to face the 

multifactorial challenge of the disease from a more systematic point of view. In particular, 

these are necessary tools for the treatment of multifactorial diseases such as AD and NDD 

in general [51]. 

 

Figure 9. Protein–ligand interaction (PLI) maps in system pharmacology. 

The systems pharmacology approach is a useful perspective to understand the 

molecular mechanisms involved in a given pathology and also to postulate new targets 

and predict the response of existing drugs and their adverse effects [145], being a way of 

tackling diseases such as AD, where it is necessary to consider the multifactorial nature in 

an integrative manner. 
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Systems pharmacology is based on the integration of data from the omics sciences, 

in order to understand the activity of drugs in vivo at the molecular, tissue, organismic, 

and cellular levels [146]. To do this, it integrates models based on pharmacokinetics-

pharmacodynamics and disease systems [147], giving way to the development of 

predictive and quantitative interaction network modeling that allows explaining the 

adverse effects of drugs [148] through the understanding and graphic vision of the 

relationship between the different targets involved. In addition, given the ability to integrate 

data in a massive way, it is possible to use information reported in recent years to obtain 

new approaches in clinical therapy. As shown by Nguyen et al. [149], they identified targets 

related to metabolism and memory, such as bradykinin receptor 2 and DLG4 receptor 

involved in memory and cognition, which showed to be involved in a network of dementia-

associated targets. 

This type of network can help both to identify the consequences of modulating one 

target or another, or what type of signaling should be targeted, and even to give an idea 

of drugs that can regulate as inhibitors, agonists, or antagonists, at the principal or 

allosteric binding sites, depending on the relevance of the target for the study and the 

network that surrounds it. 

The use of genomic data represents a great advance in precision therapy since it 

considers the possible polymorphisms present in the genome, which could cause 

variations in response to the drug [150]. The incorporation of this field in pharmacology 

has allowed us not only to understand the physiology of the disease and its response to 

medications [148] but has also given way to the characterization of interactions within the 

biological network and its influence on the identification of new therapeutic targets and 

the discovery, development, and repositioning of drugs [150]. 

8. Challenges and Future Perspectives  

In order to estimate the future and projections of research in this area, it is important 

to evaluate how it has evolved over the years. As shown in Figure 10, it is a research area that, 

year after year, presents more and more associated projects, demonstrating a high growth and 

interest by the scientific community. In addition, it is known that for the year 2023, there are 

already 10 proposed projects beginning to be recruited. Now the challenge remains to 

understand and approach this disease from more complex perspectives that allow uniting the 

efforts already made to find a more concrete solution or to build it with a solid base. 

 

Figure 10. Number of AD-related projects per year. In addition, fewer than 50 projects were carried 

out in the 1990s, and by 2023 there are already 10 proposed. (Data retrieved on July 2022 from 

www.clincialtrials.gov). 

Understanding the need to design drugs as MTDLs, capable of simultaneously 

modulating several targets in the effort to reduce or reverse the pathological 

manifestations of a multifactorial disease, might be the cornerstone of the challenge in 
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drug design for NDD and AD. Once this is in mind, the use of tools that allows quickness 

and efficiency, together with cost savings through predictive simulation and data 

preprocessing, are promising aspects in facing pathologies such as AD. The contributions 

of computational polypharmacology and pharmacoinformatics to the design of drugs for 

multifactorial diseases respond to these needs as a key part of the research in recent years. 

The current availability of various pharmacoinformatics tools, the use of networks and 

exhaustive analysis through artificial intelligence, and the availability of constructs such 

as pharmacophores to direct this process are certain fundamental elements for the 

development of the coming decades. From now on, knowing the different tools and 

software available for drug design, the challenge remains to apply them efficiently and to 

continue advancing in this field. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/pharmaceutics14091914/s1, Table S1: Drugs and their 

targets related with Alzheimer disease. 
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